1,289 research outputs found

    Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition

    No full text
    The light-matter interaction can be utilized to qualitatively alter physical properties of materials. Recent theoretical and experimental studies have explored this possibility of controlling matter by light based on driving many-body systems via strong classical electromagnetic radiation, leading to a time-dependent Hamiltonian for electronic or lattice degrees of freedom. To avoid inevitable heating, pump-probe setups with ultrashort laser pulses have so far been used to study transient light-induced modifications in materials. Here, we pursue yet another direction of controlling quantum matter by modifying quantum fluctuations of its electromagnetic environment. In contrast to earlier proposals on light-enhanced electron-electron interactions, we consider a dipolar quantum many-body system embedded in a cavity composed of metal mirrors and formulate a theoretical framework to manipulate its equilibrium properties on the basis of quantum light-matter interaction. We analyze hybridization of different types of the fundamental excitations, including dipolar phonons, cavity photons, and plasmons in metal mirrors, arising from the cavity confinement in the regime of strong light-matter interaction. This hybridization qualitatively alters the nature of the collective excitations and can be used to selectively control energy-level structures in a wide range of platforms. Most notably, in quantum paraelectrics, we show that the cavity-induced softening of infrared optical phonons enhances the ferroelectric phase in comparison with the bulk materials. Our findings suggest an intriguing possibility of inducing a superradiant-type transition via the light-matter coupling without external pumping. We also discuss possible applications of the cavity-induced modifications in collective excitations to molecular materials and excitonic devices

    Non-Hermitian physics

    Get PDF

    Many-body interferometry of magnetic polaron dynamics

    Get PDF
    The physics of quantum impurities coupled to a many-body environment is among the most important paradigms of condensed matter physics. In particular, the formation of polarons, quasiparticles dressed by the polarization cloud, is key to the understanding of transport, optical response, and induced interactions in a variety of materials. Despite recent remarkable developments in ultracold atoms and solid-state materials, the direct measurement of their ultimate building block, the polaron cloud, has remained a fundamental challenge. We propose and anlalyze a unique platform to probe time-resolved dynamics of polaron-cloud formation with an interferometric protocol. We consider an impurity atom immersed in a two-component Bose-Einstein condensate, where the impurity generates spin-wave excitations that can be directly measured by the Ramsey interference of surrounding atoms. The dressing by spin waves leads to the formation of magnetic polarons and reveals a unique interplay between few- and many-body physics that is signified by single- and multi-frequency oscillatory dynamics corresponding to the formation of many-body bound states. Finally, we discuss concrete experimental implementations in ultracold atoms.Comment: 6+6 pages, 3+2 figures. See also Research highlight [doi:10.1038/s41567-018-0088-x] in Nature Physic

    Dimensionality dependence of optical nonlinearity and relaxation dynamics in cuprates

    Full text link
    Femtosecond pump-probe measurements find pronounced dimensionality dependence of the optical nonlinearity in cuprates. Although the coherent two-photon absorption (TPA) and linear absorption bands nearly overlap in both quasi-one and two-dimensional (1D and 2D) cuprates, the TPA coefficient is one order of magnitude smaller in 2D than in 1D. Furthermore, picosecond recovery of optical transparency is observed in 1D cuprates, while the recovery in 2D involves relaxation channels with a time scales of tens of picoseconds. The experimental results are interpreted within the two-band extended Hubbard model.Comment: 10 pages, 4 figure

    Analysis of the pattern of suprahyoid muscle activity during pharyngeal swallowing of foods by healthy young subjects

    Get PDF
    We previously developed the TP technique to discriminate between the activity patterns of skeletal muscles. In this study we aim to identify the TP value(s) that can be used to sensitively evaluate the activity patterns of the suprahyoid (SH) muscles during swallowing. We also analyse the effect of food textural properties on the activity patterns of the SH muscle during oral and pharyngeal swallowing. Three test foods consisting of 3%, 6% and 9% of a thickening agent, Mousse-up (MU) were prepared. Their textural properties differed significantly. Swallowing of 9% MU involved a significantly longer average duration than 3% MU. The average T50 value for 6% MU was significantly larger than that for 3% MU. However, the average T20 and T80 values of the test foods did not differ. Thus, the T50 value is particularly suitable for evaluating SH muscle swallowing patterns. Moreover, test foods that vary in their textural properties elicit different durations and patterns of SH muscle activity

    Chiral molecule adsorption on helical polymers

    Full text link
    We present a lattice model for helicity induction on an optically inactive polymer due to the adsorption of exogenous chiral amine molecules. The system is mapped onto a one-dimensional Ising model characterized by an on-site polymer helicity variable and an amine occupancy one. The equilibrium properties are analyzed at the limit of strong coupling between helicity induction and amine adsorption and that of non-interacting adsorbant molecules. We discuss our results in view of recent experimental results
    corecore